This study describes the epidemiological characteristics of road accident victims attended by the Brazilian Mobile Emergency Service (SAMU-192) and located in the areas of highest accident density in the municipality of Olinda, (Pernambuco, Brazil). Kernel density estimation was used to detect spatial agglomerations of accidents. In 2015, 724 accidents occurred; of these, 73.48% of the victims were males aged 20-39 years. There was a predominance of accidents involving motorcycles (54.97%). Accident clusters were detected in the main traffic corridors, with run-over accidents located near bus terminals. Spatial analysis proved to be a relevant instrument for the identification of accident clusters and the application of effective prevention and traffic safety improvement measures.
Keywords: Traffic, Accidents, Emergency Medical Services, Spatial Analysis, Brazil
1. Khatib M, Gaidhane A, Quazi Z, Khatib N. Prevalence pattern of road traffic accidents in developing countries: a systematic review. International Journal of Medical Science and Public Health. 2015;4(10):1324-1333.
2. World Health Organization. Global status report on road safety 2015 ENT#091;InternetENT#093;. Italy; 2015 ENT#091;citado 20 oct 2016ENT#093;. Disponible en: https://tinyurl.com/oxk5ruv
3. Bougueroua M, Carnis L. Economic development, mobility and traffic accidents in Algeria. Accident Analysis and Prevention. 2016;92:168-174.
4. Chisholm D, Naci H, Hyder AA, Tran NT, Peden M. Cost effectiveness of strategies to combat road traffic injuries in sub-Saharan Africa and South East Asia: mathematical modelling study. British Medical Journal. 2012;344:e612.
5. Hadley KHW, Boikhutso N, Abdulgafoor MB, Hofman KJ, Hyder AA. The cost of injury and trauma care in lowand middle-income countries: a review of economic evidence. Health Policy and Planning. 2014;29(6):795-808.
6. Polinder S, Haagsma J, Bos N, Panneman M, Wolt KK, Brugmans M, Weijermars W, Beeck E. Burden of road traffic injuries: disability-adjusted life years in relation to hospitalization and the maximum abbreviated injury scale. Accident Analysis and Prevention. 2015;80:193-200.
7. Neto OLM et al. Mortality due to Road Traffic Accidents in Brazil in the last decade: trends and risk clusters. Ciência & Saúde Coletiva. 2012;17(9):2223-2236.
8. Mascarenhas MDM, Barros MBA. Characterization of hospitalizations due to external causes in the public health system, Brazil, 2011. Revista Brasileira de Epidemiologia. 2015;18(4):771-784.
9. Andrade L, Vissoci JRN, Rodrigues CG, Finato K, Carvalho E, et al. Brazilian Road Traffic Fatalities: a spatial and environmental analysis. PLoS One. 2014;9(1):e87244.
10. Cabral APS, Souza WV. Serviço de atendimento móvel de urgência (SAMU): análise da demanda e sua distribuição espacial em uma cidade do nordeste brasileiro. Revista Brasileira de Epidemiologia. 2008;11(4):530-540.
11. Harmsen AMK, Giannakopoulos GF, Moerbeek PR, Jansma EP, Bonjer HJ, Bloemers FW. The influence of prehospital time on trauma patients outcome: a systematic review. International Journal of the Care of the Injured. 2015;46(4):602-609.
12. Williamson K, Ramesh R, Grabinsky A. Advances in prehospital trauma care. International Journal of Critical Illness and Injury Science. 2011;1(1):44-50.
13. Paravar M, Hosseinpour M, Salehi S, Mohammadzadeh M, Shojaee A, Akbari H, et al. Pre-hospital trauma care in road traffic accidents in Kashan, Iran. Archives of Trauma Research. 2013;1(4):166-171.
14. McNicholl BP. The golden hour and prehospital trauma care. International Journal of Critical Illness and Injury Science. 1994;25(4):251-254.
15. McCoy CE, Menchine M, Sampson S, Anderson C, Kahn C. Emergency medical services out-of-hospital scene and transport times and their association with mortality in trauma patients presenting to an urban Level I trauma center. Annals of Emergency Medicine. 2013;61(2):167-174.
16. Meizoso JP, Valle EJ, Allen CJ, Ray JJ, Jouria JM, et al. Decreased mortality after prehospital interventions in severely injured trauma patients. The Journal of Trauma and Acute Care Surgery. 2015;79(2):227-231.
17. Richards TB, Croner CM, Rushton G, Brown CK, Fowler L. Geographic information systems and public health: mapping the future. Public Health Reports. 1999;114(4):359-373.
18. Krieger N. Place, space, and health: GIS and epidemiology. Epidemiology. 2003;14(4):384-385.
19. Ruankaew N. GIS and epidemiology. Journal of the Medical Association of Thailand. 2005;88(11):1735-1738.
20. Auchincloss AH, Gebreab SY, Mair C, Roux AVD. A review of spatial methods in epidemiology, 2000-2010. Annual Review of Public Health. 2012;33:107-122.
21. Shaw NT. Geographical information systems and health: current state and future directions. Healthcare Informatics Research. 2012;18(2):88-96.
22. Gómez-Barroso D, López-Cuadrado T, Llácer A, Suárez RP, Fernández-Cuenca R. Análisis espacial de los accidentes de tráfico con víctimas mortales en carretera en España, 2008-2011. Gaceta Sanitaria. 2015;29(1):24-29.
23. Anderson TK. Kernel density estimation and K-means clustering to profile road accident hotspots. Accident Analysis & Prevention. 2009;41(3):359-364.
24. Erdogan S. Explorative spatial analysis of traffic accident statistics and road mortality among the provinces of Turkey. Journal of Safety Research. 2009;40(5):341-351.
25. Soares RAS, Pereira APJT, Moraes RM, Vianna RPT. Caracterização das vítimas de acidentes de trânsito atendidas pelo Serviço de Atendimento Móvel de Urgência (SAMU) no Município de João Pessoa, Estado da Paraíba, Brasil, em 2010. Epidemiologia e Serviços de Saúde. 2012;21(4):589-600.
26. Blazquez CA, Celis MS. A spatial and temporal analysis of child pedestrian crashes in Santiago, Chile. Accident Analysis & Prevention. 2013;50:304-311.
27. Leveau CM. Spatial variations in motorcycle registrations and the mortality of motorcycle users due to traffic injuries in Argentina. Salud Colectiva. 2013;9(3):353-362.
28. Lawrence BM, Stevenson MR, Oxley JA, Logan DB. Geospatial analysis of cyclist injury trends: an investigation in Melbourne, Australia. Traffic Injury Prevention. 2015;16(5):513-518.
29. Hashimoto S, Yoshiki S, Saeki R, Mimura Y, Ando R, Nanba S. Development and application of traffic accident density estimation models using kernel density estimation. Journal of Traffic and Transportation Engineering (English Edition). 2016;3(3):262-270.
30. Cabral APS, Souza WV. Serviço de atendimento móvel de urgência (SAMU): análise da demanda e sua distribuição espacial em uma cidade do nordeste brasileiro. Revista Brasileira de Epidemiologia. 2008;11(4):530-540.
31. Silverman BW. Density estimation for statistics and data analysis. In: Silverman BW. Monographs on statistics and applied probability. London: Chapman and Hall; 1986.
32. Bailey TC, Gatrell AC. Interactive spatial data analysis. England: Harlow Essex; 1995.
33. Shaw NT. Geographical information systems and health: current state and future directions. Healthcare Informatics Research. 2012;18(2):88-96.
34. Cai X, Wu Z, Cheng J. Using kernel density estimation to assess the spatial pattern of road density and its impact on landscape fragmentation. International Journal of Geographical Information Science. 2013;27(2):222-230.
35. Hsiao M, Malhotra A, Thakur JS, Sheth JK, Nathens AB, Dhingra N, Jha P. Road traffic injury mortality and its mechanisms in India: nationally representative mortality survey of 1.1 million homes. British Medical Journal Open. 2013;3(8):e002621.
36. Karkee R, Lee AH. Epidemiology of road traffic injuries in Nepal, 2001-2013: systematic review and secondary data analysis. British Medical Journal Open. 2016;6(4):e010757
37. Singh R, Singh HK, Gupta SC, Kumar Y. Pattern, severity and circumtances of injuries sustained in road traffic accidents: a tertiary care hospital-based study. Indian Journal of Community Medicine. 2014;39(1)30-34.
38. Pulido J, Barrio G, Hoyos J, Jiménez-Mejías E, Martín-Rodríguez Mdel M, Houwing S, Lardelli-Claret P. The role of exposure on differences in driver death rates by gender and age: results of a quasi-induced method on crash data in Spain. Accident Analysis & Prevention. 2016;94:162-167.
39. Russo F, Biancardo SA, Dell’Acqua G. Road safety from the perspective of driver gender and age as related to the injury crash frequency and road scenario. Traffic Injury Prevention. 2014;15(1):25-33.
40. Quitian-Reyes H, Gómez-Restrepo C, Gómez MJ, Naranjo S, Heredia P, Villegas JJ. Latin American clinical epidemiology network series - paper 5: years of life lost due to premature death in traffic accidents in Bogota, Colombia. Journal of Clinical Epidemiology. 2017;86:101-105.
41. Andrade SS, Mello-Jorge MH. Mortality and potential years of life lost by road traffic injuries in Brazil, 2013. Revista de Saúde Pública. 2016;50:59.
42. Almeida APB, Lima MLC, Oliveira Júnior FJM, Abath MB, Lima MLLT. Potential years of life lost because of road traffic accidents in Pernambuco state, Brazil, 2007. Epidemiologia e Serviços de Saúde. 2013;22(2):235-242.
43. Andrade LM, Lima MA, Silva CHC, Caetano JA. Acidentes de motocicleta: características das vítimas e dos acidentes em hospital de Fortaleza-Ce, Brasil. Revista da Rede de Enfermagem do Nordeste. 2009;10(4):52-59.
44. Leporati M, Salvo RA, Pirro V, Salomone A. Driving under the influence of alcohol. A 5-year overview in Piedmont, Italy. Journal of Forensic and Legal Medicine. 2015;34:104-108.
45. Brasil. Lei Nº 12.760, de 20 de dezembro de 2012 ENT#091;InternetENT#093;. Brasília; 2012 ENT#091;citado 21 mar 2017ENT#093;. Disponible en: https://tinyurl.com/y8z32alp
46. Malta DC, Berna RT, Silva MM, Claro RM, Silva Júnior JB, Reis AA. Consumption of alcoholic beverages, driving vehicles, a balance of dry law, Brazil 2007-2013. Revista de Saúde Pública. 2014;48(4):692-966.
47. Moafian G, Aghabeigi MR, Heydari ST, Hoseinzadeh A, Lankarani KB, Sarikhani Y. An epidemiologic survey of road traffic accidents in Iran: analysis of driver-related factors. Chinese Journal of Traumatology. 2013;16(3):140-144.
48. Estado de Pernambuco, Secretaria Estadual de Saúde Secretaria Executiva de Regulação em Saúde, Diretoria Geral de Fluxos Assistenciais. Central de Regulação de Leitos Manual Operacional ENT#091;InternetENT#093;. Recife; 2014 ENT#091;citado 21 mar 2017ENT#093;. Disponible en: https://tinyurl.com/y7f7y3ca
49. Auchincloss AH, Gebreab SY, Mair C, Roux AVD. A review of spatial methods in epidemiology, 2000-2010. Annual Review of Public Health. 2012;33:107-122.
50. Avci C, Durduran SS. Analysis of pedestrian accidents using a geographical information system (GIS) in Konya city, Turkey. WIT Transactions on The Built Environment. 2014;134:495-501.
51. Carvalho CHR. Mortes por acidentes de transporte terrestre no Brasil: análise dos sistemas de informação do ministério da saúde. Brasília: Instituto de Pesquisa Econômica Aplicada; 2016.
52. Marín-León L, Belon AP, Barros MBA, Almeida SDM, Restitutti MC. Trends in traffic accidents in Campinas, São Paulo State, Brazil: the increasing involvement of motorcyclists. Cadernos de Saúde Pública. 2012:28(1):39-51.
53. Diniz EPH, Pinheiro LC, Proietti FA. Quando e onde se acidentam e morrem os motociclistas em Belo Horizonte, Minas Gerais, Brasil. Cadernos de Saúde Pública. 2015;31(12):2621-2634.
54. Thakali L, Kwon TJ, Liping F. Identification of crash hotspots using kernel density estimationand kriging methods: a comparison. Journal of Modern Transportation. 2015;23(2):93-106.
55. Deshpande N, Chanda I, Arkatkar SS. Accident mapping and analysis using geographical information systems. International Journal of Earth Sciences and Engineering. 2011;4(6):342-345.