Therapeutic value and price of the new pharmaceuticals commercialized in Argentina: Are they worth what they cost?

Martín Cañás Médico. Magíster en Farmacoepidemiología. Docente, Instituto de Ciencias de la Salud, Universidad Nacional “Arturo Jauretche”; Facultad de Ciencias Médicas, Universidad Nacional de La Plata. Área de Farmacología, Federación Médica de la Provincia de Buenos Aires (FEMEBA), Buenos Aires, Argentina. image/svg+xml , Héctor Omar Buschiazzo Doctor en Medicina. Profesor extraordinario consulto, Facultad de Ciencias Médicas, Universidad Nacional de La Plata. Área de Farmacología, Federación Médica de la Provincia de Buenos Aires (FEMEBA), Buenos Aires, Argentina. image/svg+xml , Martín Alejandro Urtasun Médico. Magíster en Epidemiología, Gestión y Políticas de Salud. Docente, Instituto de Ciencias de la Salud, Universidad Nacional “Arturo Jauretche”. Área de Farmacología, Federación Médica de la Provincia de Buenos Aires (FEMEBA), Buenos Aires, Argentina. image/svg+xml
Received: 10 July 2018, Accepted: 8 October 2018, Published: 10 March 2019 Open Access
Abstract views
2767
Metrics Loading ...

Abstract


In Argentina, new drugs can be authorized by presenting the drug’s certificate of approval in at least one of 15 countries considered to have rigorous health surveillance, without needing to carry out a local evaluation of the efficacy, safety or added therapeutic value of the new product. In this article, we evaluate the new drugs commercialized in Argentina in 2016 using different approaches: their approval by other regulatory agencies, the demonstration of their efficacy in randomized clinical trials, types of outcomes studied, rating of their added therapeutic value using two widely recognized scales, and their sale price to the public. It is concluded that, as a reflection of what occurs in developed countries, new drugs enter the market at exorbitant prices, but the majority do not represent a significant therapeutic advancements. The result is increased risks to patients and an overburdening of the public and private funding systems.


References


1. Morgan SG, Bassett KL, Wright JM, Evans RG, Barer ML, Caetano PA, Black CD. “Breakthrough” drugs and growth in expenditure on prescription drugs in Canada. British Medical Journal. 2005;331 (7520):815-816.

2. National Institute for Health Care Management. Changing Patterns of Pharmaceutical Innovation [Internet]. Washington DC: The National Institute for Health Care Management Research and Educational Foundation; 2002 [citado 12 dic 2017]. Disponible en: https://tinyurl.com/yd3rc2q8.

3. Botelho SF, Martins MAP, Reis AMM. Analysis of new drugs registered in Brazil in view of the Unified Health System and the disease burden. Ciência & Saúde Coletiva. 2018;23(1):215-228.

4. Editorial Staff. New products and new indications in 2016: a system that favours imitation over the pursuit of real progress. Prescrire International. 2017;26(182):136-139.

5. Ward DJ, Slade A, Genus T, Martino OI, Stevens AJ. How innovative are new drugs launched in the UK?: A retrospective study of new drugs listed in the British National Formulary (BNF) 2001-2012. BMJ Open. 2014;4(10):e006235.

6. Vitry AI, Shin NH, Vitre P. Assessment of the therapeutic value of new medicines marketed in Australia. Journal of Pharmaceutical Policy and Practice. 2013;6:2.

7. van Luijn JCF, Gribnau FWJ, Leufkens HGM. Superior efficacy of new medicines? European Journal of Clinical Pharmacology. 2010;66(5):445-448.

8. Argentina, Poder Ejecutivo Nacional. Decreto 150/92: Normas para el registro, elaboración, fraccionamiento, prescripción, expendio, comercialización, exportación e importación de medicamentos; Ambito de aplicación; Disposiciones Generales [Internet]. 1992 [citado 1 mar 2018]. Disponible en: https://tinyurl.com/y79tdvq8.

9. Ahlqvist-Rastad J, Bardelay D, Beermann B, Mignot G. Judging the therapeutic value of drugs: A comparison between La revue Prescrire and Information från Läkemedelsverket, the bulletin of the Swedish Medical Products Agency. The International Journal of Risk & Safety in Medicine. 2004;16(2):83-90.

10. Prescrire. Prescrire’s ratings system: new drugs and indications, at a glance [Internet]. c2018 [citado 6 mar 2018]. Disponible en: https://tinyurl.com/ydx9muqn.

11. Aronson JK, Ferner RE, Hughes DA. Defining rewardable innovation in drug therapy. Nature Reviews Drug Discovery. 2012;11(4):253-254.

12. Motola D, De Ponti F, Poluzzi E, Martini N, Rossi P, Silvani MC, Vaccheri A, Montanaro N. An update on the first decade of the European centralized procedure: how many innovative drugs? British Journal of Clinical Pharmacology. 2006;62(5):610-616.

13. Homedes N, Ugalde A. Ensayos clínicos en América Latina: implicancias para la sustentabilidad y seguridad de los mercados farmacéuticos y el bienestar de los sujetos. Salud Colectiva. 2016;12(3):317-345.

14. Administración Nacional de Medicamentos, Alimentos y Tecnología Médica. Altas en el vademécum nacional de medicamentos [Internet]. c2018 [citado 1 mar 2018]. Disponible en: https://tinyurl.com/y8rb5wog.

15. WHO Collaborating Centre for Drug Statistics Methodology. ATC/DDD Index 2018 [Internet]. c2017 [citado 1 mar 2018]. Disponible en: https://tinyurl.com/yckuy4rt.

16. Kairos. 2016;XXXVIII(448):1-210.

17. Drugs@FDA: FDA Approved Drug Products [Internet]. c2018 [citado 1 mar 2018]. Disponible en: https://tinyurl.com/l5mfqlh.

18. Center for Drug Evaluation and Research. Manual of policies and procedures [Internet]. 2013 [citado 1 mar 2018]. Disponible en: https://tinyurl.com/yamw8h6s.

19. European Medicines Agency [Internet]. c1995-2018 [citado 1 mar 2018]. Disponible en: https://www.ema.europa.eu/.

20. Laporte JR, Porta M, Capella D. Drug utilization studies: a tool for determining the effectiveness of drug use. British Journal of Clinical Pharmacology. 1983;16(3):301-304.

21. United States, Food and Drug Administration. New drug, antibiotic, and biological drug product regulations: accelerated approval; Final rule. Federal Register. 1992;57(239):58942-58960.

22. FDA-NIH Biomarker Working Group. BEST (Biomarkers, EndpointS, and other Tools) Resource [Internet]. 2016 [citado 5 mar 2018]. Disponible en: https://tinyurl.com/ydbcc2er.

23. Twaddell S. Surrogate outcome markers in research and clinical practice. Australian Prescriber. 2009;32(2):47-50.

24. Kim C, Prasad V. Cancer drugs approved on the basis of a surrogate end point and subsequent overall survival: an analysis of 5 years of US food and drug administration approvals. JAMA Internal Medicine. 2015;175(12):1992-1994.

25. Rupp T, Zuckerman D. Quality of life, overall survival, and costs of cancer drugs approved based on surrogate endpoints. JAMA Internal Medicine. 2017;177(2):276-277.

26. Administración Nacional de Medicamentos, Alimentos y Tecnología Médica. Disposición 8806/16 [Internet]. 2016 [citado 1 mar 2018]. Disponible en: https://tinyurl.com/y7gfs6kv.

27. Administración Nacional de Medicamentos, Alimentos y Tecnología Médica. Disposición 0759/16 [Internet]. 2016 [citado 1 mar 2018]. Disponible en: https://tinyurl.com/y7u7ejug.

28. Esteban C, Quintana JM, Aburto M, Moraza J, Egurrola M, España PP, Pérez-Izquierdo J, Capelastegui A. Predictors of mortality in patients with stable COPD. Journal of General Internal Medicine. 2008;23(11):1829-1834.

29. Traver GA, Cline MG, Burrows B. Predictors of mortality in chronic obstructive pulmonary disease: A 15-year follow-up study. The American Review Of Respiratory Disease. 1979;119(6):895-902.

30. Mishra P, Murray J, Birnkrant D. Direct-acting antiviral drug approvals for treatment of chronic hepatitis C virus infection: Scientific and regulatory approaches to clinical trial designs. Hepatology: Official Journal of the American Association for the Study of Liver Diseases. 2015;62(4):1298-1303.

31. van der Meer AJ, Veldt BJ, Feld JJ, Wedemeyer H, Dufour J-F, Lammert F, Duarte-Rojo A, Heathcote EJ, et al. Association between sustained virological response and all-cause mortality among patients with chronic hepatitis C and advanced hepatic fibrosis. JAMA. 2012;308(24):2584-2593.

32. Gabler NB, French B, Strom BL, Palevsky HI, Taichman DB, Kawut SM, Halpern SD. Validation of 6-minute walk distance as a surrogate end point in pulmonary arterial hypertension trials. Circulation. 2012;126(3):349-356.

33. Zeukeng MJ, Seoane-Vazquez E, Bonnabry P. A comparison of new drugs approved by the FDA, the EMA, and Swissmedic: an assessment of the international harmonization of drugs. European Journal of Clinical Pharmacology. 2018;74(6):811-818.

34. Braillon A. The race for drug approvals: hasten slowly? European Journal of Clinical Pharmacology. 2018;74(9):1197-1198.

35. Prasad V, Kim C, Burotto M, Vandross A. The strength of association between surrogate end points and survival in oncology: A systematic review of trial-level meta-analyses. JAMA Internal Medicine. 2015;175(8):1389-1398.

36. Pease AM, Krumholz HM, Downing NS, Aminawung JA, Shah ND, Ross JS. Postapproval studies of drugs initially approved by the FDA on the basis of limited evidence: systematic review. BMJ: British Medical Journal. 2017;357:j1680.

37. Naci H, Smalley KR, Kesselheim AS. Characteristics of preapproval and postapproval studies for drugs granted accelerated approval by the Us Food and Drug Administration. JAMA. 2017;318(7):626-636.

38. Knopf K, Baum M, Shimp WS, Bennett CL, Faith D, Fishman ML, Hrushesky WJ. Interpretation of surrogate endpoints in the era of the 21st Century Cures Act. BMJ: British Medical Journal. 2016;355:i6286.

39. Gellad WF, Kesselheim AS. Accelerated approval and expensive drugs: A challenging combination. The New England Journal of Medicine. 2017;376(21):2001-2004.

40. Hawkes N. German body calls for pause in European plan for fast track drug approval. BMJ. 2016;354:i4479.

41. Colombia, Ministerio de Salud. Decreto 433 de 2018 [Internet]. 2018 [citado 15 mar 2018]. Disponible en: https://tinyurl.com/y78xoxz2.